
MATH2048 Honours Linear Algebra II
Solution to Midterm Examination 1

1. Let    and 
       .

(a) Find a basis    for   and a basis  for .
(b) Compute  and use it to determine whether or not  .

Solution:

(a) For  , we have   . 

Hence, we have 

, where  . 

Thus, we have    . 

For  , we have  

Hence, we have 

, where . 

Thus, we have   .

(b) Using (a), considering the -matrix which consisting all column vectors of  
and   : 

 

Since the rank of the matrix is  3, hence we have   . 
Further notice that   . 
Thus,   . 

W1 = {(a1, a2, a3, a4) ∈ ℝ4 : a1 + a2 − a4 = 0, a2 + a3 = 0}
W2 = {(a1, a2, a3, a4) ∈ ℝ4 : a1 + a2 + 2a3 + a4 = 0, a2 − a4 = 0}

β1 W1 β2 W2

dim(W1 + W2) ℝ4 = W1 ⊕ W2

(a1, a2, a3, a4) ∈ W1 {a3 = − a2
a4 = a1 + a2

a1
a2
a3
a4

=

a1
a2

−a2
a1 + a2

= a1

1
0
0
1

+ a2

0
1

−1
1

a1, a2 ∈ ℝ

β1 =

1
0
0
1

,

0
1

−1
1

(a1, a2, a3, a4) ∈ W2 {a1 = − 2a3 − 2a4
a2 = a4

a1
a2
a3
a4

=

−2a3 − 2a4
a4
a3
a4

= a3

−2
0
1
0

+ a4

−2
1
0
1

a3, a4 ∈ ℝ

β2 =

−2
0
1
0

,

−2
1
0
1

(4 × 4) β1
β2

1 0 −2 −2
0 1 0 1
0 −1 1 0
1 1 0 1

−R1+R4

1 0 −2 −2
0 1 0 1
0 −1 1 0
0 1 2 3

R2+R3

−R2+R4

1 0 −2 −2
0 1 0 1
0 0 1 1
0 0 2 2

2R3+R1

−2R3+R4

1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 0

dim(W1 + W2) = 3
dim(ℝ4) = 4 ≠ dim(W1 + W2) = 3

ℝ4 ≠ W1 ⊕ W2
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2. Let  .  Consider the following mapping 
                                

 

Let    and   be bases 

for  and  respectively.
(a) Show that  T  is a linear transformation.
(b) Compute  .  Please show your steps.

(c) Use the rank-nullity theorem to determine whether  T  is one-to-one.  Please explain 
your answer with details.

Solution:
(a) Take   and , then we have 

 

                              

                              

                                
Thus,  T  is a linear transformation.

(b) Note that 

      

      

    

Thus, we have 

 . 

p0(x) = x + 1
T : P2(ℝ) → M2×2(ℝ)

p(x) ↦ (
p(0) p′ (1)

(p0 ⋅ p)′ (0) ∫ 1
0

p(t)dt)
β = {1, x, x2} γ = {(1 0

0 0), (−1 1
0 0), (−1 0

1 0), (−1 0
0 1)}

P2(ℝ) M2×2(ℝ)

[T ]γ
β

f, g ∈ P2(ℝ) α ∈ ℝ

T (α f + g) = (
(α f + g)(0) (α f + g)′ (1)

(p0 ⋅ (α f + g))′ (0) ∫ 1
0

(α f (t) + g(t))dt)
= (

α f (0) + g(0) α f ′ (1) + g′ (1)

α(p0 ⋅ f )′ (0) + (p0 ⋅ g)′ (0) ∫ 1
0

α f (t)dt + ∫ 1
0

g(t)dt)
= (

α f (0) α f ′ (1)

α(p0 ⋅ f )′ (0) α ∫ 1
0

f (t)dt) + (
g(0) g′ (1)

(p0 ⋅ g)′ (0) ∫ 1
0

g(t)dt)
= αT ( f ) + T (g)

T (1) = (1 0
1 1) = 3 (1 0

0 0) + 0 (−1 1
0 0) + 1 (−1 0

1 0) + 1 (−1 0
0 1)

T (x) = (
0 1
1 1

2 ) =
5
2 (1 0

0 0) + 1 (−1 1
0 0) + 1 (−1 0

1 0) +
1
2 (−1 0

0 1)
T (x2) = (

0 2
0 1

3 ) =
7
3 (1 0

0 1) + 2 (−1 1
0 0) + 0 (−1 0

1 0) +
1
3 (−1 0

0 1)

[T ]γ
β =

3
5
2

7
3

0 1 2
1 1 0

1
1
2

1
3
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(c) Using (b), note that 

     

 

                

Hence by rank-nullity theorem, we have 

 

Thus, we have    and this shows that  T  is one-to-one.

3. Let  

 

be a vector space over . The addition and scalar multiplication are defined as  
  for any    and  . 

Given    is a basis for  V.  Let    be defined as 
 , where    refers to the second order derivatives of  f.

(a) Show that  T  is a linear transformation.
(b) Show that  T  is an isomorphism.

Solution:
(a) Take    and  , then we have 

 

Thus,  T  is a linear transformation. 

[T ]γ
β

R1↔R3

1 1 0
0 1 2
3 5

7
7
3

1 1
2

1
3

−R1+R4

−3R1+R3

1 1 0
0 1 2
0 − 16

7
7
3

0 − 1
2

1
3

1
2 R2+R4,−R2+R1

16
7 R2+R3

1 0 −2
0 1 2
0 0 7

3

0 0 4
3

3
7 R3

1 0 −2
0 1 2
0 0 1
0 0 4

3

2R3+R1,−2R3+R2

− 4
3 R3+R4

1 0 0
0 1 0
0 0 1
0 0 0

rank ([T ]γ
β) + Nullity ([T ]γ

β) = dim (P2(ℝ)) = 3

3 + Nullity ([T ]γ
β) = 3

Nullity ([T ]γ
β) = 0

𝒩 ([T ]γ
β) = {0}

V = {
K

∑
m=1

am sin(m x) +
K

∑
n=1

bn cos(n x) : am, bn ∈ ℝ for m , n = 1,…, K}
ℝ

(a f + g)(x) = a f (x) + g(x) f, g ∈ V a ∈ ℝ
β = {sin(m x), cos(n x)}K

m,n=1 T : V → V
T ( f ) := − f ′ ′ + f f ′ ′ 

f, g ∈ V a ∈ ℝ
T (a f + g) = − (a f + g)′ ′ + (a f + g)

= − a f ′ ′ − g′ ′ + a f + g
= a(−f ′ ′ + f ) + (−g′ ′ + g)
= aT ( f ) + T (g)
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(b) Now, it remains to show  T  is one-to-one and onto. 
For any     such that  , let  

, 

where    and  . 
Then, we have 

  

and hence 

 

because   is a basis for  V . 
Note that  , hence we have   
for all  . This implies that    and  , thus  T  is one-
to-one. 
 
Moreover, from the above  for any , it is clearly that   . 
Hence    and hence  T  is onto. 
Thus,  T  is isomorphism as  T  is linear, one-to-one and onto.

f ∈ 𝒩(T ) ⊂ V T ( f ) = 0

f (x) =
K

∑
m=1

am sin(m x) +
K

∑
n=1

bn cos(n x)

am, bn ∈ ℝ m , n = 1,…, K

T ( f ) = − f ′ ′ + f

= − (
K

∑
m=1

− amm2 sin(m x) +
K

∑
n=1

− bnn2 cos(n x)) + (
K

∑
m=1

am sin(m x) +
K

∑
n=1

bn cos(n x))
=

K

∑
m=1

(1 + m2)am sin(m x) +
K

∑
n=1

(1 + n2)bn cos(n x)

K

∑
m=1

(1 + m2)am sin(m x) +
K

∑
n=1

(1 + n2)bn cos(n x) = 0

(1 + m2)am = (1 + n2)bn = 0
β = {sin(m x), cos(n x)}K

m,n=1
m , n = 1,…, K ⟹ 1 + m2,1 + n2 ≠ 0 am = bn = 0

m , n = 1,…, K f = 0 𝒩(T ) = {0}

T ( f ) f ∈ V ℛ(T ) = 𝗌𝗉𝖺𝗇(β )
dim ℛ(T ) = |β | = 2K = dim V
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4. Let    be the vector space of real-valued continuous functions on .
(a) Let    be a linear transformation.  Define the induced linear trans-

formation    by   .  Show that    is an 
isomorphism if and only if    is onto.

(b) Let  W  be a subspace of  V  defined as follows: 

. 

Construct an isomorphism between    and  , where  . 
Deduce the dimension of   .

Solution:

(a)  Suppose  is an isomorphism, then for any , there exists 
   for some   such that   . 

Thus, we have    is onto. 
  Suppose  is onto, then for any , there exist some  such that  

, which is clear that    is onto.  Now, it remains to show  
that   is one-to-one. 
For any , we have  and this implies 
that  ,  so we have    and hence   is one-to-one. 
Thus, we have    is isomorphism.

(b) Note that we want to construct an isomorphism  between  and , by using 
the result in (a), if we have to consider there is a linear map  such that  

 and such  must be onto.  That means, for any  , we 
have to construct such onto   and satisfies  and . 
 

Construct    by    

It is obviously that    is linear. 
Then, we want to show    makes sense. 
For any  , we have   

 

then this follows that 

 

Hence, this shows that    and  . 
 
 

V = C ([0,1], ℝ) [0,1]
Φ : V → ℝk

Φ̃ : V/𝒩(Φ) → ℝk Φ̃ (v + 𝒩(Φ)) = Φ(v) Φ̃
Φ

W = {f ∈ V : f (0) = f ( 1
N ) = f ( 2

N ) = ⋯ = f ( N − 1
N )}

V/W ℝk k = dim (V/W)
V/W

( ⇒ ) Φ̃ y ∈ ℝk

v + 𝒩(Φ) ∈ V/𝒩(Φ) v ∈ V Φ̃ (v + 𝒩(Φ)) = y = Φ(v)
Φ

( ⇐ ) Φ y ∈ ℝk v ∈ V
y = Φ(v) = Φ̃ (v + 𝒩(Φ)) Φ̃

Φ̃
u + 𝒩(Φ) ∈ 𝒩(Φ̃ ) Φ̃ (u + 𝒩(Φ)) = 0 = Φ(u)

u ∈ 𝒩(Φ) u + 𝒩(Φ) = 0 + 𝒩(Φ) Φ̃
Φ̃

Φ̃ V/W ℝk

Φ : V → ℝk

Φ̃ : V/𝒩(Φ) → ℝk Φ f ∈ W
Φ Φ( f ) = 0 W = 𝒩(Φ)

Φ : V → ℝN−1 f ↦

f ( 1
N ) − f (0)

⋮

f ( N − 1
N ) − f (0)

Φ
W = 𝒩(Φ)

f ∈ 𝒩(Φ)

0 = Φ( f ) =

f ( 1
N ) − f (0)

⋮

f ( N − 1
N ) − f (0)

f (0) = f ( 1
N ) = f ( 2

N ) = ⋯ = f ( N − 1
N )

f ∈ W 𝒩(Φ) ⊂ W
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On the other hand,  for any  , we have 

 

then we have   

 

and hence 

 

This shows that    and  . 
Therefore, we have  . 
 
Next, it remains to show    is onto. 

For any  , there is a piecewise linear function   defined as 

follows: 

 

such that   . 
Thus,    is onto. 
 
Finally, by using (a), the induced linear transformation  is 
defined by   ,  
that is  defined as  is isomorphism follows from 
the result of (a). 
Thus, it is clear that   .

f ∈ W

f (0) = f ( 1
N ) = f ( 2

N ) = ⋯ = f ( N − 1
N )

f ( 1
N ) − f (0) = ⋯ = f ( N − 1

N ) − f (0) = 0

Φ( f ) =

f ( 1
N ) − f (0)

⋮

f ( N − 1
N ) − f (0)

= 0

f ∈ 𝒩(Φ) W ⊂ 𝒩(Φ)
W = 𝒩(Φ)

Φ

a =
a1
⋮

aN−1

∈ ℝN−1 f ∈ V

f (0) = 0

f ( k
N ) = ak + f (0) k = 1,…, N − 1

Φ( f ) = a
Φ

Φ̃ : V/𝒩(Φ) → ℝN−1

Φ̃ (v + 𝒩(Φ)) = Φ(v)
Φ̃ : V/W → ℝN−1 v + W ↦ Φ(v)

dim (V/W) = N − 1
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5. Let  V  be an infinite dimensional vector space over  F.  Suppose  W  is a proper subspace 
of  V  (that is,  ).  Consider the family of subspaces: 

.

(a) Using Zorn’s lemma, prove that   contains a maximal element  .

(b) Prove that   .
Solution:

(a) First of all, the elements in  are partially ordered with respect to inclusion. 
For any chain    in  :   , define 

 

Then, we have to show  . 

•  Note that   

•  Also,    is a subspace. 
Since   . 
For any  , there exist    such that    and  . 
It implies that   . 
Hence   , for any  and . 
Last, applying Zorn’s lemma. 
Since    is a member of    that contains each member of  . 
By Zorn’s lemma,    contains a maximal element   .

(b) Using the result of (a), since   and hence . 
Now, it remains to show that   . 
Since  , obviously   . 
Suppose that  , then there exist some   and  . 

Now, it is sufficient to show . 

For any  , there exist   and    such that 
 

Since  , we have    . 
However,    and  , we have  . 
Hence, we have   

 
It implies that    and     and hence  . 
Therefore, we have   and then .  

This contradicts to the maximality of existence of  in . So, the assumption that 
  is false and therefore   . 

Thus, by definition and this shows that    and completes the proof.
END

W ⊊ V
ℱ := {A ⊂ V : A is a subspace and  A ∩ W = {0}}

ℱ W̃
V = W ⊕ W̃

ℱ
𝒞 ℱ A1 ⊂ A2 ⊂ ⋯ ⊂ Ak ⊂ ⋯

Ã =
∞

⋃
k=1

Ak

Ã ∈ ℱ

Ã ∩ W = (
∞

⋃
k=1

Ak) ∩ W =
∞

⋃
k=1

(Ak ∩ W) =
∞

⋃
k=1

{0} = {0}
Ã

0 ∈ A0 ∈ Ã
x, y ∈ Ã m , n ∈ ℤ+ x ∈ Am y ∈ An

x, y ∈ Amax{m, n}
α x + y ∈ Amax{m, n} ⊂ Ã α ∈ F x, y ∈ Ã

Ã ℱ 𝒞
ℱ W̃

W̃ ∈ ℱ W̃ ∩ W = {0}
V = W + W̃

W, W̃ ⊂ V W + W̃ ⊂ V
V ⊊ W + W̃ x ∈ V ∖(W + W̃) x ≠ 0

(W̃ + 𝗌𝗉𝖺𝗇{x}) ∩ W = {0}
y ∈ (W̃ + 𝗌𝗉𝖺𝗇{x}) ∩ W w̃ ∈ W̃ a ∈ F

y = w̃ + ax
y ∈ W ax = y − w̃ ∈ W + W̃

x ∉ W + W̃ x ≠ 0 a = 0

w̃ = w̃ + 0x = y ∈ W
w̃ ∈ W ∩ W̃ = {0} w̃ = 0 y = w̃ + ax = 0

(W̃ + 𝗌𝗉𝖺𝗇{x}) ∩ W = {0} W̃ + 𝗌𝗉𝖺𝗇{x} ∈ ℱ
W̃ ℱ

V ⊊ W + W̃ V = W + W̃
V = W ⊕ W̃
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