MATH2048 Honours Linear Algebra II Solution to Midterm Examination 1

1. Let
$$W_1 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 : a_1 + a_2 - a_4 = 0, a_2 + a_3 = 0\}$$
 and
 $W_2 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 : a_1 + a_2 + 2a_3 + a_4 = 0, a_2 - a_4 = 0\}$

- (a) Find a basis β_1 for W_1 and a basis β_2 for W_2 .
- (b) Compute dim $(W_1 + W_2)$ and use it to determine whether or not $\mathbb{R}^4 = W_1 \oplus W_2$.

Solution:

(a) For
$$(a_1, a_2, a_3, a_4) \in W_1$$
, we have $\begin{cases} a_3 = -a_2 \\ a_4 = a_1 + a_2 \end{cases}$.
Hence, we have $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ -a_2 \\ a_1 + a_2 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$, where $a_1, a_2 \in \mathbb{R}$.
Thus, we have $\beta_1 = \begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 1 \end{bmatrix} \end{cases}$.
For $(a_1, a_2, a_3, a_4) \in W_2$, we have $\begin{cases} a_1 = -2a_3 - 2a_4 \\ a_2 = a_4 \end{bmatrix}$.
Hence, we have $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} -2a_3 - 2a_4 \\ a_3 \\ a_4 \end{bmatrix} = a_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + a_4 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, where $a_3, a_4 \in \mathbb{R}$.

Thus, we have $\beta_2 = \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

(b) Using (a), considering the (4×4) -matrix which consisting all column vectors of β_1 and β_2 :

 $\begin{bmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_4} \begin{bmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{R_2 + R_3} \xrightarrow{-R_2 + R_4} \begin{bmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{bmatrix} \xrightarrow{2R_3 + R_4} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Since the rank of the matrix is 3, hence we have dim $(W_1 + W_2) = 3$. Further notice that dim $(\mathbb{R}^4) = 4 \neq \dim(W_1 + W_2) = 3$. 2. Let $p_0(x) = x + 1$. Consider the following mapping

$$T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$

$$p(x) \mapsto \begin{pmatrix} p(0) & p'(1) \\ (p_0 \cdot p)'(0) & \int_0^1 p(t)dt \end{pmatrix}$$
Let $\beta = \{1, x, x^2\}$ and $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be bases for $P_2(\mathbb{R})$ and $M_{2\times 2}(\mathbb{R})$ respectively.

(a) Show that T is a linear transformation.

- (b) Compute $[T]_{\beta}^{\gamma}$. Please show your steps.
- (c) Use the rank-nullity theorem to determine whether T is one-to-one. Please explain your answer with details.

Solution:

(a) Take
$$f, g \in P_2(\mathbb{R})$$
 and $\alpha \in \mathbb{R}$, then we have

$$T(\alpha f + g) = \begin{pmatrix} (\alpha f + g)(0) & (\alpha f + g)'(1) \\ (p_0 \cdot (\alpha f + g))'(0) & \int_0^1 (\alpha f(t) + g(t)) dt \end{pmatrix}$$

$$= \begin{pmatrix} \alpha f(0) + g(0) & \alpha f'(1) + g'(1) \\ \alpha(p_0 \cdot f)'(0) + (p_0 \cdot g)'(0) & \int_0^1 \alpha f(t) dt + \int_0^1 g(t) dt \end{pmatrix}$$

$$= \begin{pmatrix} \alpha f(0) & \alpha f'(1) \\ \alpha(p_0 \cdot f)'(0) & \alpha \int_0^1 f(t) dt \end{pmatrix} + \begin{pmatrix} g(0) & g'(1) \\ (p_0 \cdot g)'(0) & \int_0^1 g(t) dt \end{pmatrix}$$

$$= \alpha T(f) + T(g)$$

Thus, T is a linear transformation.

(b) Note that

$$T(1) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \mathbf{3} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \mathbf{0} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + \mathbf{1} \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} + \mathbf{1} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$T(x) = \begin{pmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{pmatrix} = \frac{\mathbf{5}}{\mathbf{2}} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \mathbf{1} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + \mathbf{1} \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} + \frac{\mathbf{1}}{\mathbf{2}} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$T(x^2) = \begin{pmatrix} 0 & 2 \\ 0 & \frac{1}{3} \end{pmatrix} = \frac{\mathbf{7}}{\mathbf{3}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \mathbf{2} \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + \mathbf{0} \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} + \frac{\mathbf{1}}{\mathbf{3}} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus, we have

$$[T]_{\beta}^{\gamma} = \begin{bmatrix} 3 & \frac{5}{2} & \frac{7}{3} \\ 0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}.$$

(c) Using (b), note that

$$\begin{bmatrix} T \end{bmatrix}_{\beta}^{\gamma} \xrightarrow{R_{1} \leftrightarrow R_{3}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 3 & \frac{5}{7} & \frac{7}{3} \\ 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \xrightarrow{-R_{1} + R_{4}} \xrightarrow{-R_{1} + R_{4}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & -\frac{16}{7} & \frac{7}{3} \\ 0 & -\frac{1}{2} & \frac{1}{3} \end{bmatrix} \xrightarrow{\frac{1}{2}R_{2} + R_{4}, -R_{2} + R_{1}} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & \frac{7}{3} \\ 0 & 0 & \frac{4}{3} \end{bmatrix} \xrightarrow{\frac{3}{7}R_{3}} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & \frac{4}{3} \end{bmatrix} \xrightarrow{2R_{3} + R_{1}, -2R_{3} + R_{2}} \xrightarrow{\left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}} \xrightarrow{2R_{3} + R_{1}, -2R_{3} + R_{4}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence by rank-nullity theorem, we have

rank
$$([T]_{\beta}^{\gamma})$$
 + Nullity $([T]_{\beta}^{\gamma})$ = dim $(P_2(\mathbb{R}))$ = 3
 3 + Nullity $([T]_{\beta}^{\gamma})$ = 3
Nullity $([T]_{\beta}^{\gamma})$ = 0
nus, we have $\mathcal{N}([T]_{\beta}^{\gamma}) = \{0\}$ and this shows that T is one-

Thus, we have $\mathcal{N}\left([T]_{\beta}^{\gamma}\right) = \{0\}$ and this shows that T is one-to-one.

3. Let

$$V = \left\{ \sum_{m=1}^{K} a_m \sin(mx) + \sum_{n=1}^{K} b_n \cos(nx) : a_m, b_n \in \mathbb{R} \text{ for } m, n = 1, ..., K \right\}$$

be a vector space over \mathbb{R} . The addition and scalar multiplication are defined as (af + g)(x) = af(x) + g(x) for any $f, g \in V$ and $a \in \mathbb{R}$. Given $\beta = {\sin(mx), \cos(nx)}_{m,n=1}^{K}$ is a basis for V. Let $T: V \to V$ be defined as T(f) := -f'' + f, where f'' refers to the second order derivatives of f.

- (a) Show that T is a linear transformation.
- (b) Show that *T* is an isomorphism.

Solution:

(a) Take
$$f, g \in V$$
 and $a \in \mathbb{R}$, then we have

$$T(af+g) = -(af+g)'' + (af+g)$$

$$= -af'' - g'' + af + g$$

$$= a(-f''+f) + (-g''+g)$$

$$= aT(f) + T(g)$$

Thus, T is a linear transformation.

(b) Now, it remains to show T is one-to-one and onto. For any $f \in \mathcal{N}(T) \subset V$ such that T(f) = 0, let

$$f(x) = \sum_{m=1}^{K} a_m \sin(mx) + \sum_{n=1}^{K} b_n \cos(nx),$$

where $a_m, b_n \in \mathbb{R}$ and m, n = 1, ..., K. Then, we have

$$T(f) = -f'' + f$$

= $-\left(\sum_{m=1}^{K} -a_m m^2 \sin(mx) + \sum_{n=1}^{K} -b_n n^2 \cos(nx)\right) + \left(\sum_{m=1}^{K} a_m \sin(mx) + \sum_{n=1}^{K} b_n \cos(nx)\right)$
= $\sum_{m=1}^{K} (1 + m^2) a_m \sin(mx) + \sum_{n=1}^{K} (1 + n^2) b_n \cos(nx)$
and hence
 $\sum_{m=1}^{K} (1 + m^2) a_m \sin(mx) + \sum_{n=1}^{K} (1 + n^2) b_n \cos(nx) = 0$

$$(1+m^2)a_m = (1+n^2)b_n = 0$$

because $\beta = {\sin(mx), \cos(nx)}_{m,n=1}^{K}$ is a basis for V. Note that $m, n = 1, ..., K \implies 1 + m^2, 1 + n^2 \neq 0$, hence we have $a_m = b_n = 0$ for all m, n = 1, ..., K. This implies that f = 0 and $\mathcal{N}(T) = {0}$, thus T is one-to-one.

Moreover, from the above T(f) for any $f \in V$, it is clearly that $\mathscr{R}(T) = \operatorname{span}(\beta)$. Hence dim $\mathscr{R}(T) = |\beta| = 2K = \dim V$ and hence T is onto. Thus, T is isomorphism as T is linear, one-to-one and onto.

- 4. Let $V = C([0,1], \mathbb{R})$ be the vector space of real-valued continuous functions on [0,1].
 - (a) Let $\Phi: V \to \mathbb{R}^k$ be a linear transformation. Define the induced linear transformation $\widetilde{\Phi}: V / \mathcal{N}(\Phi) \to \mathbb{R}^k$ by $\widetilde{\Phi}(v + \mathcal{N}(\Phi)) = \Phi(v)$. Show that $\widetilde{\Phi}$ is an isomorphism if and only if Φ is onto.
 - (b) Let W be a subspace of V defined as follows: $W = \left\{ f \in V : f(0) = f\left(\frac{1}{N}\right) = f\left(\frac{2}{N}\right) = \dots = f\left(\frac{N-1}{N}\right) \right\}.$ Construct an isomorphism between V/W and \mathbb{R}^k , where $k = \dim(V/W)$. Deduce the dimension of V/W.

Solution:

- (a) (⇒) Suppose Φ is an isomorphism, then for any y ∈ ℝ^k, there exists v + N(Φ) ∈ V/N(Φ) for some v ∈ V such that Φ (v + N(Φ)) = y = Φ(v). Thus, we have Φ is onto.
 (⇐) Suppose Φ is onto, then for any y ∈ ℝ^k, there exist some v ∈ V such that y = Φ(v) = Φ(v + N(Φ)), which is clear that Φ is onto. Now, it remains to show that Φ is one-to-one.
 For any u + N(Φ) ∈ N(Φ), we have Φ (u + N(Φ)) = 0 = Φ(u) and this implies that u ∈ N(Φ), so we have u + N(Φ) = 0 + N(Φ) and hence Φ is one-to-one. Thus, we have Φ is isomorphism.
- (b) Note that we want to construct an isomorphism $\widetilde{\Phi}$ between V/W and \mathbb{R}^k , by using the result in (a), if we have to consider there is a linear map $\Phi : V \to \mathbb{R}^k$ such that $\widetilde{\Phi} : V/\mathcal{N}(\Phi) \to \mathbb{R}^k$ and such Φ must be onto. That means, for any $f \in W$, we have to construct such onto Φ and satisfies $\Phi(f) = \mathbf{0}$ and $W = \mathcal{N}(\Phi)$.

Construct
$$\Phi: V \to \mathbb{R}^{N-1}$$
 by $f \mapsto \begin{bmatrix} f\left(\frac{1}{N}\right) - f(0) \\ \vdots \\ f\left(\frac{N-1}{N}\right) - f(0) \end{bmatrix}$

It is obviously that Φ is linear.

Then, we want to show $W = \mathcal{N}(\Phi)$ makes sense. For any $f \in \mathcal{N}(\Phi)$, we have

$$\mathbf{0} = \Phi(f) = \begin{bmatrix} f\left(\frac{1}{N}\right) - f(0) \\ \vdots \\ f\left(\frac{N-1}{N}\right) - f(0) \end{bmatrix}$$

then this follows that

for that

$$f(0) = f\left(\frac{1}{N}\right) = f\left(\frac{2}{N}\right) = \dots = f\left(\frac{N-1}{N}\right)$$
shows that $f \in W$ and $\mathcal{N}(\Phi) \subset W$

Hence, this shows that $f \in W$ and $\mathcal{N}(\Phi) \subset W$.

On the other hand, for any $f \in W$, we have

$$f(0) = f\left(\frac{1}{N}\right) = f\left(\frac{2}{N}\right) = \dots = f\left(\frac{N-1}{N}\right)$$

then we have

$$f\left(\frac{1}{N}\right) - f(0) = \dots = f\left(\frac{N-1}{N}\right) - f(0) = 0$$

and hence

$$\Phi(f) = \begin{bmatrix} f\left(\frac{1}{N}\right) - f(0) \\ \vdots \\ f\left(\frac{N-1}{N}\right) - f(0) \end{bmatrix} = \mathbf{0}$$

This shows that $f \in \mathcal{N}(\Phi)$ and $W \subset \mathcal{N}(\Phi)$. Therefore, we have $W = \mathcal{N}(\Phi)$.

Next, it remains to show Φ is onto.

For any $\mathbf{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_{N-1} \end{bmatrix} \in \mathbb{R}^{N-1}$, there is a piecewise linear function $f \in V$ defined as

follows:

$$\begin{cases} f(0) = 0\\ f\left(\frac{k}{N}\right) = a_k + f(0) \quad k = 1, \dots, N-1 \end{cases}$$

such that $\Phi(f) = \mathbf{a}$. Thus, Φ is onto.

Finally, by using (a), the induced linear transformation $\widetilde{\Phi}: V / \mathscr{N}(\Phi) \to \mathbb{R}^{N-1}$ is defined by $\widetilde{\Phi}(v + \mathcal{N}(\Phi)) = \Phi(v)$, that is $\widetilde{\Phi} : V/W \to \mathbb{R}^{N-1}$ defined as $v + W \mapsto \Phi(v)$ is isomorphism follows from

the result of (a).

Thus, it is clear that $\dim (V/W) = N - 1$.

5. Let V be an infinite dimensional vector space over F. Suppose W is a proper subspace of V (that is, $W \subsetneq V$). Consider the family of subspaces:

 $\mathcal{F} := \left\{ A \subset V : A \text{ is a subspace and } A \cap W = \{\mathbf{0}\} \right\}.$

- (a) Using Zorn's lemma, prove that \mathscr{F} contains a maximal element \widetilde{W} .
- (b) Prove that $V = W \oplus \widetilde{W}$.

Solution:

(a) First of all, the elements in \mathscr{F} are partially ordered with respect to inclusion. For any chain \mathscr{C} in \mathscr{F} : $A_1 \subset A_2 \subset \cdots \subset A_k \subset \cdots$, define

$$\widetilde{A} = \bigcup_{k=1}^{\infty} A_k$$

Then, we have to show $\widetilde{A} \in \mathscr{F}$. • Note that $\widetilde{A} \cap W = \left(\bigcup_{k=1}^{\infty} A_k\right) \cap W = \bigcup_{k=1}^{\infty} \left(A_k \cap W\right) = \bigcup_{k=1}^{\infty} \left\{\mathbf{0}\right\} = \left\{\mathbf{0}\right\}$ • Also, \widetilde{A} is a subspace.

Since $\mathbf{0} \in A_0 \in \widetilde{A}$.

For any $\mathbf{x}, \mathbf{y} \in \widetilde{A}$, there exist $m, n \in \mathbb{Z}^+$ such that $\mathbf{x} \in A_m$ and $\mathbf{y} \in A_n$. It implies that $\mathbf{x}, \mathbf{y} \in A_{\max\{m, n\}}$.

Hence $\alpha \mathbf{x} + \mathbf{y} \in A_{\max\{m, n\}} \subset \widetilde{A}$, for any $\alpha \in F$ and $\mathbf{x}, \mathbf{y} \in \widetilde{A}$. Last, applying Zorn's lemma.

Since A is a member of \mathscr{F} that contains each member of \mathscr{C} . By Zorn's lemma, \mathscr{F} contains a maximal element \widetilde{W} .

Using the result of (a), since $\widetilde{W} \in \mathscr{F}$ and hence $\widetilde{W} \cap W = \{\mathbf{0}\}$. (b) Now, it remains to show that $V = W + \widetilde{W}$. Since $W, \widetilde{W} \subset V$, obviously $W + \widetilde{W} \subset V$. Suppose that $V \subsetneq W + \widetilde{W}$, then there exist some $\mathbf{x} \in V \setminus (W + \widetilde{W})$ and $\mathbf{x} \neq \mathbf{0}$. Now, it is sufficient to show $(\widetilde{W} + \operatorname{span}\{\mathbf{x}\}) \cap W = \{\mathbf{0}\}$. For any $\mathbf{y} \in (\widetilde{W} + \operatorname{span}\{\mathbf{x}\}) \cap W$, there exist $\widetilde{\mathbf{w}} \in \widetilde{W}$ and $a \in F$ such that $\mathbf{y} = \tilde{\mathbf{w}} + a\mathbf{x}$ Since $\mathbf{y} \in W$, we have $a\mathbf{x} = \mathbf{y} - \tilde{\mathbf{w}} \in W + \widetilde{W}$. However, $\mathbf{x} \notin W + \widetilde{W}$ and $\mathbf{x} \neq \mathbf{0}$, we have a = 0. Hence, we have $\tilde{\mathbf{w}} = \tilde{\mathbf{w}} + 0\mathbf{x} = \mathbf{y} \in W$ It implies that $\tilde{\mathbf{w}} \in W \cap \widetilde{W} = \{\mathbf{0}\}$ and $\tilde{\mathbf{w}} = \mathbf{0}$ and hence $\mathbf{y} = \tilde{\mathbf{w}} + a\mathbf{x} = \mathbf{0}$. Therefore, we have $(\widetilde{W} + \operatorname{span}\{\mathbf{x}\}) \cap W = \{\mathbf{0}\}$ and then $\widetilde{W} + \operatorname{span}\{\mathbf{x}\} \in \mathscr{F}$. This contradicts to the maximality of existence of \widetilde{W} in \mathscr{F} . So, the assumption that $V \subsetneq W + \widetilde{W}$ is false and therefore $V = W + \widetilde{W}$. Thus, by definition and this shows that $V = W \oplus \widetilde{W}$ and completes the proof.

END